You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

80 lines
2.3 KiB

# 导入 socket、sys 模块
import socket
import numpy as np
import cv2
import time
def read_and_process_txt(file_path):
processed_data = []
with open(file_path, "r") as file:
for line in file:
# 去除每行末尾的换行符
line = line.strip()
# 按空格分割每行
items = line.split()
# 这里简单地将分割后的数据作为一个列表加入到结果列表中
# 实际应用中,你可能需要根据具体数据结构进行更复杂的处理
processed_data.append(items)
# 如果你确实需要将这些数据转换为JSON,可能需要构造一个合适的结构
# 例如,如果你的文本文件每行代表一个对象的属性,你可能需要构建字典
# 下面是一个假设的例子,将每行转换为字典并尝试转为JSON字符串
json_data = {items[0]: items[1] for items in processed_data}
try:
return json_data
except TypeError as e:
print(f"Error converting to JSON: {e}")
baseConfig = read_and_process_txt("./base.txt")
print(baseConfig)
# 创建 socket 对象
socketlocal = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# 设置本地主机名
host = "127.0.0.1"
# 设置端口号
port = int(baseConfig["udpPngPort1"])
# 1.创建一个udp套接字
udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
local_addr = (host, port)
udp_socket.bind(local_addr)
prev_frame_time = 0
new_frame_time = 0
count = 0
countTotal = 0
while True:
# 接收数据:
data = udp_socket.recv(1219112 * 2)
# print("recv data",data)
# 解码
nparr = np.frombuffer(data, np.uint8)
# 解码成图片numpy
img_decode = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# 帧率计算
new_frame_time = time.time()
if new_frame_time - prev_frame_time < 1:
count += 1
else:
countTotal = count
count = 0
prev_frame_time = new_frame_time
if count != 0:
countTotal = max([countTotal, count])
cv2.putText(
img_decode,
"FPS:{}".format(countTotal),
(30, 45),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 255),
1,
)
if img_decode is not None and img_decode.shape[0] > 0 and img_decode.shape[1] > 0:
cv2.imshow("result1", img_decode)
if cv2.waitKey(1) & 0xFF == ord("q"):
break