You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.3 KiB
80 lines
2.3 KiB
# 导入 socket、sys 模块
|
|
import socket
|
|
import numpy as np
|
|
import cv2
|
|
import time
|
|
|
|
|
|
def read_and_process_txt(file_path):
|
|
processed_data = []
|
|
with open(file_path, "r") as file:
|
|
for line in file:
|
|
# 去除每行末尾的换行符
|
|
line = line.strip()
|
|
# 按空格分割每行
|
|
items = line.split()
|
|
# 这里简单地将分割后的数据作为一个列表加入到结果列表中
|
|
# 实际应用中,你可能需要根据具体数据结构进行更复杂的处理
|
|
processed_data.append(items)
|
|
|
|
# 如果你确实需要将这些数据转换为JSON,可能需要构造一个合适的结构
|
|
# 例如,如果你的文本文件每行代表一个对象的属性,你可能需要构建字典
|
|
# 下面是一个假设的例子,将每行转换为字典并尝试转为JSON字符串
|
|
json_data = {items[0]: items[1] for items in processed_data}
|
|
try:
|
|
return json_data
|
|
except TypeError as e:
|
|
print(f"Error converting to JSON: {e}")
|
|
|
|
|
|
baseConfig = read_and_process_txt("./base.txt")
|
|
print(baseConfig)
|
|
# 创建 socket 对象
|
|
socketlocal = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
|
|
|
# 设置本地主机名
|
|
host = "127.0.0.1"
|
|
# 设置端口号
|
|
port = int(baseConfig["udpPngPort1"])
|
|
|
|
# 1.创建一个udp套接字
|
|
udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
|
local_addr = (host, port)
|
|
udp_socket.bind(local_addr)
|
|
|
|
prev_frame_time = 0
|
|
new_frame_time = 0
|
|
count = 0
|
|
countTotal = 0
|
|
while True:
|
|
# 接收数据:
|
|
data = udp_socket.recv(1219112 * 2)
|
|
# print("recv data",data)
|
|
# 解码
|
|
|
|
nparr = np.frombuffer(data, np.uint8)
|
|
# 解码成图片numpy
|
|
img_decode = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
|
# 帧率计算
|
|
new_frame_time = time.time()
|
|
if new_frame_time - prev_frame_time < 1:
|
|
count += 1
|
|
else:
|
|
countTotal = count
|
|
count = 0
|
|
prev_frame_time = new_frame_time
|
|
if count != 0:
|
|
countTotal = max([countTotal, count])
|
|
cv2.putText(
|
|
img_decode,
|
|
"FPS:{}".format(countTotal),
|
|
(30, 45),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 0, 255),
|
|
1,
|
|
)
|
|
if img_decode is not None and img_decode.shape[0] > 0 and img_decode.shape[1] > 0:
|
|
cv2.imshow("result1", img_decode)
|
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
break
|
|
|