1000
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

81 lines
2.4 KiB

import cv2
import torch
import numpy as np
from PIL import Image
from ultralytics import YOLO
# 3个输入参数
img_path = 'img0002.jpg'
iou = 0.1
conf = 0.25
def split_image(img_path, size=(800, 800)):
img = cv2.imread(img_path)
height, width = img.shape[:2]
rows = (height + size[1] - 1) // size[1]
cols = (width + size[0] - 1) // size[0]
img_list = []
indexes = []
for r in range(rows):
for c in range(cols):
y1 = r * size[1]
y2 = min((r + 1) * size[1], height)
x1 = c * size[0]
x2 = min((c + 1) * size[0], width)
split = img[y1:y2, x1:x2]
img_list.append(split)
indexes.append((r, c))
return img_list, indexes, (height, width)
def combine_images(pred_imgs, indexes, size=(800, 800), img_shape=(3000, 4000)):
combined_img = np.zeros((img_shape[0], img_shape[1], 3), dtype=np.uint8)
for idx, (r, c) in enumerate(indexes):
y1 = r * size[1]
y2 = min((r + 1) * size[1], img_shape[0])
x1 = c * size[0]
x2 = min((c + 1) * size[0], img_shape[1])
combined_img[y1:y2, x1:x2] = pred_imgs[idx][:y2 - y1, :x2 - x1]
return combined_img
follicle_groups_detector = YOLO('follicle_groups.pt')
follicles_detector = YOLO('follicles.pt')
results = follicle_groups_detector(img_path, iou=iou, conf=conf)
for r in results:
num_follicle_groups = len(r.boxes)
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
im.save('results_1.jpg') #输出结果图1
img_list, indexes, (height, width) = split_image(img_path)
print(f"Number of image blocks: {len(img_list)}")
num_small_follicles = 0
num_big_follicles = 0
pred_imgs = []
for img in img_list:
results = follicles_detector(img, iou=iou, conf=conf)
for r in results:
num_small_follicles += torch.sum(r.boxes.cls == 0).item()
num_big_follicles += torch.sum(r.boxes.cls == 1).item()
im_array = r.plot()
pred_imgs.append(im_array)
# 输出的3个结果文本
print('毛囊群数量:', num_follicle_groups)
print('大毛囊数量:', num_big_follicles)
print('小毛囊数量:', num_small_follicles)
combined_img = combine_images(pred_imgs, indexes, size=(800, 800), img_shape=(height, width))
combined_image_pil = Image.fromarray(combined_img[..., ::-1])
combined_image_pil.save('results_2.jpg') #输出结果图2